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We compare two approaches for the accurate calculation of the energy levels of weakly bound boson trimers.
The first approach is based on correlation function Monte Carlo employing optimized trial functions, while
the second approach is based on the discrete variable representation. A trimer with atoms of half the mass of
neon is used as a test problem for benchmark calculations. The two approaches yield identical results, within
error bars, for all theJ ) 0 energy levels below the dissociation threshold. The relative merits of the two
techniques are discussed, and a perspective is given for extension to larger clusters.

I. Introduction

The study of weakly bound van der Waals clusters is of great
current interest. For instance, recent experiments on doped
helium clusters have raised fundamental questions regarding
superfluidity in finite-size systems.1,2 For triatomic clusters, the
accurate calculation of bound states near and above the
isomerization threshold, and up to the dissociation threshold is
a current challenge, as is finding an answer to the question how
many excited states small4He clusters have. The latter is
important for the interpretation of diffraction experiments on
small 4He clusters.3 These are just a few examples to illustrate
the importance of the development of approaches for such
calculations.

A standard method is the use of a product-type basis set
representation to obtain essentially exact solutions to the
Schrödinger equation.4,5 The solution of the eigenvalue problem
can be achieved using iterative procedures such as the Lanczos
recursion techniques.6 The discrete variable representation
(DVR) pioneered by Light and co-workers4,7,8 has been used
successfully in this context.

Another very promising method relies the use of many-
parameter trial functions which are optimized by means of
Monte Carlo (MC) methods. The residual variational bias is
subsequently reduced by a correlation function Monte Carlo
(CFMC) projection approach.9,10 More explicitly, the optimiza-
tion yields a highly correlated, compact basis set for which
overlap and Hamiltonian matrix elements are obtained by means
of a quantum Monte Carlo imaginary-time projection method
which generates results for a sequence of projection times. This
is followed by explicit diagonalization to obtain the desired
bound-state energies of the cluster.

A more detailed description of the trial states has been given,
e.g., in refs 10, 11, and 19. For completeness we mention here
that the trial functions have parts that impose short- and long-
range boundary conditions; without these, there would be no

quantization of energy levels. In addition, the trial wave
functions have many variational parameters to describe the
correlations in regions in which the cluster is to be found with
high probability.

We note that early comparison of the CFMC method to DVR
was unfavorable due to convergence problems in DVR.11 Recent
work on neon and argon trimers12 showed that CFMC and
converged DVR results are in excellent agreement. One objec-
tive of the present work is to compare the DVR and CFMC
approaches for the more weakly bound “half-neon” trimer.

This system will have a higher zero-point energy than the
previously studied neon trimer and is expected to provide a more
stringent test of the performance of the DVR and CFMC
techniques. The present excited-state results also complement
a recent study that addressed the issue of interdimensional
degeneracies for the ground state of the half-neon trimer.19 We
also stress that we present for the first time, a comparison of
the DVR and CFMC methods forall the J ) 0 bound states
below the dissociation threshold. We therefore consider the
present comparison more complete than the previous one.12

The rest of this paper is organized as follows: in section II,
we present the two approaches used to obtained bosonic trimer
bound states and show and discuss results for the so-called “half-
neon” system; we conclude the paper and provide a perspective
in section III.

II. Theory and Numerical Results

The “half-neon” trimer is used a benchmark system. More
specifically, we use a dimensionless Hamiltonian with pair
interactions of the Lennard-Jones form,r-12 - 2r-6, wherer is
the distance between two particles. One parameter, the reciprocal
massµ-1, is required. This reciprocal mass is related to the
physical particle massm, and Lennard-Jones core radiusσ, and
well depthε, through the following relation:µ-1 ) p2/(mσ2ε).
The reciprocal mass of “half-neon” is set toµ-1 ) 0.01418 by
definition. The parameterµ, the square of the de Boer parameter
(apart from a numerical factor), is proportional to the zero-point
energy in a spacial region of linear dimensionσ expressed in
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units of the well depthε. This parameter is therefore composed
of all the factors affecting the floppiness of the system. Using
the half-neon value forµ is equivalent to an hypothetical isotopic
substitution. This lower reduced mass will yield a smaller
number of bound states closer in energy to the continuum of
scattering states and with greater delocalization (vide infra). All
of these factors contribute to a significant increase of the
computational challenge posed by systems of decreased reduced
mass.

An important quantity is the dissociation threshold of the
cluster. For a trimer, this threshold is defined as the zero-point
energy (ground state) of the dimer,E20, where the subscript 2
denotes the two-body nature of the dimer, and the second
subscript, 0, denotes the ground state. For the “half-neon” dimer,
E20 ) - 0.427588.

The two theoretical approaches used in the present work are
the MC optimization-CFMC method (CFMC for short) and the
Pekeris coordinates DVR method. The CFMC implementation
used here is the one described in refs 10 and 11 employing
slightly different guiding functions.

The Pekeris coordinates DVR approach of ref 12 is applied
here with the following parameters: The dimensionless DVR
grid size is (rmax ) 5) and 80 basis functions per degree of
freedom are required to obtain the desired accuracy. We set an
upper limit (ceiling) of 1000 to the potential. Finally, the basis
function parameters are as in ref 12:a ) 3 b ) 0. The a
parameter has a nonzero value to ensure that the wave function
has a nonzero value when the configuration of the trimer is
linear, and theb parameter is set to zero to impose bound-state
boundary conditions at large interparticle separations. Bound-
state energies and wave functions are calculated using the
symmetry-adapted Lanczos (SAL) approach.13,14An advantage
of the Pekeris coordinate system15,16 is the fact that all degrees
of freedom are equivalent and projection operators correspond-
ing to permutation symmetry can be constructed in a straight-
forward fashion by simple exchange of degrees of freedom.
These coordinates do not suffer from the interdependent range
problem associated with pair distance coordinates.17 Finally, the
use of Pekeris coordinates allows one to highlight the importance
of linear configurations through the analysis of one- and two-
dimensional distributions derived from the bound-state wave
functions. These qualities have proved useful in the study of
structural properties of weakly bound pure12 and mixed18 boson
trimers. We present in Figure 1 a schematic depiction of the
Pekeris coordinates for isosceles and near linear triangular
configurations of a trimer.

All “half-neon” trimer bound states with energies below the
dissociation threshold,E20, are presented in Table 1. The

agreement between the CFMC and DVR results is excellent.
The results are in fact identical for all the digits reported except
for statesk ) 2 (0.0013% difference) andk ) 4 (0.017%
difference). These small differences may be explained in terms
of statistical errors, but we should note that it can be quite
difficult to disentangle these stochastic errors from the system-
atic bias due to a finite projection time. In the absence of
statistical errors the CFMC results would be strict upper bounds
to the exact energies. The difference between two calculations
is the largest for statek ) 4. This is the state with the highest
energy below the dissociation threshold. Nevertheless, the
CFMC result for statek ) 4 is, as expected based on the
variational principle, higher than the exact DVR result. We
expect that a longer projection time, which requires a longer
Monte Carlo run, or improved trial functions will remove the
variational bias and the apparent discrepancy.

We should mention in this context that for the CFMC results
it can be quite difficult to decide whether the variational bias
has been reduced to below the statisitical error. This is a
consequence of the fact that the statistical errors as a function
of projection time are correlated, which leads to curves that
appear smoother than they would be for uncorrelated errors. In
addition, the results are obtained by solving a generalized
eigenvalue problem, which features an overlap matrix that is
positive definite. The Monte Carlo estimate of this matrix has
statistical errors that may destroy this positivity property. With
increasing projection time, these errors increase, and the
projection process fails dramatically as soon as the computed
overlap matrix develops negative eigenvalues. All of these
problems tend to produce residual variational bias, i.e., an
overestimate of the energy of levels with slower convergence.

We also included in Table 1 DVR results for different values
of rmax in order to establish convergence. For all states belowk
) 4, a grid size of 3 was sufficient to obtain accurate energies.
Results obtained with grid sizes of 5 and 6 are identical.

We present in Figure 2 one-dimensional reduced distribution
functions associated with the wave functions. These are obtained
by integrating the square of the wave function over all Pekeris
coordinates except one.12 We simply denote this remaining
coordinate byr. We first note that for the ground state, the
distribution function decays at aroundr ) 1, while it was shown
in ref 12 that the corresponding distributions decayed atr )
0.6 andr ) 0.8 for the argon and neon trimers, respectively.
This additional delocalization of the ground state is a clear
indication of the increased floppiness of the half-neon trimer
in comparison to the argon and neon cases. The resulting
distribution functions will sometimes have a nonzero amplitude
at r ) 0, an indication that linear configuration are possible for
a given state. For the half-neon trimer, we see from Figure 2
that all states, except for the ground state (k ) 0), are likely to

Figure 1. Schematic representation of the Pekeris coordinates, (r1, r2,
r3), used in the DVR calculations. The centers of the circle correspond
to the positions of the atoms. There exists a unique way to draw three
mutually tangent circles, the radii of which define the Pekeris
coordinates. (a) When two of the coordinates are equal,r1 ) r2 here,
the trimer is in an isosceles configuration. (b) When one coordinate is
nearly zero,r3 is small here, the configuration of the cluster is nearly
linear.

TABLE 1: Half-Neon Trimer Bound State Energies
Obtained by the CFMC and DVR Methods

DVR

k CFMC rmax ) 3 rmax ) 5 rmax ) 6

0 -1.308624 -1.308624 -1.308624 -1.308624
1a -0.88032 -0.88032 -0.88032 -0.88032
2 -0.75941 -0.75940 -0.75940 -0.75940
3 -0.56716 -0.56716 -0.56716 -0.56716
4 -0.48046 -0.48038 -0.48054 -0.48054

a The statistical error of the CFMC results is estimated to be a few
units in the last digit. DVR results for three grid sizes,rmax ) 3, rmax

) 5, andrmax ) 6, are presented. The zero-point energy of the half
neon dimer (dissociation threshold) isE20 ) - 0.427588.b Linear
configurations become significant fork g 1.
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have linear configurations. We consider linear configurations
to be important when the amplitude atr ) 0 is of the same
order of magnitude as the amplitude at the maximum of the
distribution. We have indicated by an asterisk in Table 1 the
fact that staring with statek ) 1, linear configurations become
important according to the above definition. For statek ) 4,
the distribution extends to larger values ofr. Figure 3 contains

a log plot of the one-dimensional reduced distribution function
for statek ) 4 for two grids of length 3 and 5, respectively.

A closer look at the tail of the distribution function fork )
4 reveals that the wave function is truncated when a grid size
of 3 is used. This incorrect asymptotic behavior can be used to
explain why the energy for this shorter grid size is not as
negative as the one obtained for a grid size of 5. The agreement
between the CFMC and DVR results fork ) 4 is not as good
as in the case of the first four bound states. Maybe this is because
the energy of thek ) 4 state is so close to the dissociation
threshold. We finally show in Figure 4 two-dimensional reduced
distribution functions12 for the first five bound states and one
state with energy above the dissociation threshold.

This “ink blot” representation reveals the nodal structure of
the excited-state wave functions.

III. Conclusions and Outlook

We have shown that the CFMC and DVR methods can yield
energy level estimates of comparable accuracy. The “half-neon”
trimer was used as a benchmark system because it is more
weakly bound than the neon trimer for which the two methods
had previously been successfully compared.12 We have also
demonstrated the ability of the CFMC method to calculateall
theJ ) 0 bound states up to the dissociation threshold. Such a
complete comparison of DVR and CFMC had not been
presented so far. On the basis of the DVR calculation, we
observed that the system contains contributions from linear
configurations for all the excited states as revealed by the
analysis of distribution functions. The DVR approach allows
the calculation of both energy levels and wave functions for
ground and excited states whereas the CFMC method have, as
far as we know, thus far been used for the calculation of excited
energies only. Generalization to the computation of expectation
values of operators that are diagonal in the position representa-
tion is straightforward in principle, but predicting the accuracy
of such an approach is a different matter altogether. The CFMC
method can however be applied to much larger problems since
it does not suffer from exponential scaling with number of
degrees of freedom in contradistiction to product basis methods.
This is because the underlying basis functions of the CFMC
method are highly correlated multidimensional functions gener-
ated by quantum Monte Carlo. Indeed, excited state energies

Figure 2. One-dimensional reduced distributions for statesk ) 0-4.

Figure 3. Logarithmic plot of the one-dimensional reduced distribution
for the k ) 4 state for two grid lengths 3 and 5.

Figure 4. Two-dimensional reduced distributions for the first five bound states and one state above the dissociation threshold.
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of seven and five particle systems respectively in three and six
spacial dimensions have been obtained with this method.10,19

Using DVR type approaches, tetramer calculations are in
principle possible now, but pentamer calculations would be
intractable with current computers. An important extension of
the CFMC method would obviously be the calculation of wave
functions. The extension of CFMC method to the case of
systems with rigid bonds such as doped helium clusters would
be extremely interesting. Here, one could perform the direct
calculation of excited states, and therefore transition frequencies
that could be compared to recent experiments on HeNOCS and
HeNN2O clusters.1,2 In these systems, one deals with a rigid
molecule with fixed interparticle distances and a floppy helium
environment that consists of several atoms. A re-formulation
of the CFMC approach in curvilinear coordinates is a possibility
for these types of studies. The use of such coordinates would
allow one to account for fixed interparticles distances in a
straightforward manner. Curvilinear coordinates have recently
been used to study the finite temperature properties of various
small and medium doped helium clusters.20-22 If one uses
Cartesian coordinates, this constraint has to be accounted for
during the Monte Carlo sampling. Techniques used in rigid body
quantum Monte Carlo23-25 could in principle be adapted for
the CFMC method for this purpose. With these extensions, the
CFMC method could become the approach of choice for the
calculation of excited states in weakly bound clusters where
the number of degrees of freedom render the use of product-
type basis sets impractical.
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